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ABSTRACT 

The class of mathematical programming problems whose range is 
in eudidian n-space but whose domain is an abstract space is 
considered. A duality theory is presented that relates the 
constrained maximization problem considered as a function of 
its right-hand side to the associated Lagrangian maximization 
problem considered as a function of the Lagrange multipliers. 
The analysis leads to useful computational procedures. 

The constrained maximization problem as a function of Its 
right-hand side is 

P(y) - Sup  H(z) 
G(z) < y 
z c S  , 

where S is an arbitrary set, H(z) a functional defined on 
S , G(z) a vector of functional» defined on S , and y is 
a vector in euclidlan J-space. The associated Lagrangian 
maximization problem as a function of the Lagrange multipliers 

L(u) - Sup {H(z) - u • [G(z) - d]} 
zeS 

where    u    is a vector in euclidlan J-space and    d    is the 
specific value of    y    for which the solution of the 
constrained maximization problem Is sought. 

Various conditions for a strong duality,  in the sense that 

Sup P(y) ■  Inf L(u) 
y  <. d u ^ 0 

are presented.     The duality results and some  regularity 
properties of the functions    P(y)    and    L(u)     are used as  the 
basis for computational  procedures.     Dual and  primal-dual 
algorithms for concave programs are given. 

Finally,  some of  the  theory presented  Is applied  to the 
problem of optimal  adjustment of  the capacity of a  firm. 
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CHAPTER 1 

INTRODUCTION 

1.1  RESULTS TO BE PRESENTED 

In this paper we consider the class of mathematical programming 

problems whose range Is In euclldlan n-space but whose domain of definition 

Is an abstract space. The motivation for Including abstract spaces In the 

analysis Is to obtain results for the Infinite dimensional spaces of 

economic Interest as well as the usual mathematical programming problems 

In euclldlan n-space.  In fact, It was the consideration of an economic 

problem that gave rise to some of the theory to be presented. The term 

"decomposition programming" is employed to emphasize the role played in 

the analysis by the Lagrange multipliers, which historically have been 

associated with decomposing large-scale programs into subprograms of 

more reasonable size. Further there is a very close connection, which will 

be developed in the text, between the computational procedures to be 

presented and Dantzig's [101 decomposition algorithm for concave programs. 

We will extensively investigate the relationship between the 

constrained maximization problem considered as a function of its right- 

hand side and its associated Lagranglan maximization problem considered 

as a function of the Lagrangp multipliers.  Our analysis attempts always 

to take that direction that gives insight into new and existing computa- 

tional procedures.  The constrained maximization problem considered as 

a function of its right-hand side is 



(1.1-1) 

P(y) -Sup H(z) 

G(z) < y 

E C S 

where S is an arbitrary set, H(z) a functional defined on S, G(z) 

a vector of functionals defined on S , and y is a vector in euclidian 

J-space. When y takes on a specific value, say y « d , then (1.1-1) 

is merely the usual constrained maximization problem. The associated 

Lagrangian maximization problem considered as a function of its Lagrange 

multipliers is 

(1.1-2) L(u) - Sup {H(z) - u [G(z) - d]) u > 0 
ECS 

where    u    is a vector in euclidian J-space. 

When    y    is specified and    S    is a set in euclidian n-space,  the 

conditions under which a solution to  (1.1-2) yields a solution to  (1.1-1) 

are given in the familiar Kuhn-Tucker [19]  saddle point theorem.    These 

conditions have been generalized by Hurwicz  [17]   to the case were    S    is 

a set in a linear space.    However,  establishing the optimality conditions 

and developing algorithms to satisfy them are two entirely different 

problems. 

In the development of nonlinear programming algorithms, when    S 

is a set in euclidian n-space,  an extremely important role has been played 

by the duality theory of Wolfe  [29]  and others.    This theory assumes that 

S    is an open set and that the functions are differentlable;  then the 

"dual" problem becomes 
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Min   {H(z)  - u   •  G(z)) 

(1.1-3) VH(z)  - u   •   7C(z)  - 0 

u > 0 z c S  . 

However,  as  (1.1-3) Is not generally a convex program even when (1.1-1) 

Is appropriately a conrave program,   the role of the "dual" problem has 

been a passive one.    That is,  in the course of most nonlinear programming 

algorithms "dual" feasible points are constructed which are used to 

bound the primal objective function and thus act as a termination criteria. 

Alternatively, whr.n    S    is a set  in euclidian n-space,  a much less 

emphasized related problem has been considered by Huard  [16],  Falk [13], 

and Takahashi  [27].    Falk refers  to the following as the "auxiliary 

problem" 

(1.1-4) Inf L(u) 
u>0 

where    L(u)     is defined in  (1.1-2).     Huard  [16],  assumes  that    L(u)     is 

differentiable and then shows that a solution of  (1.1-4)  yields a solution 

of  (1.1-1)  directly.    He also gives an algorithm for solving  (1.1-4) 

in this case.     Falk [13],  assumes that    H(z)    is strictly concave,   then 

demonstrates  that    L(u)    must be differentiable,  and hence  that a 

solution of  (1.1-4) yields a solution of   (1.1-1).     Takahashi  [27],   is 

concerned only with equality constraints but obtains results similar to 

those of   [13].     He further considers  linear programming problems and 

develops a decomposition algorithm that  is remarkably similar  to that of 

Balas  [3]. 

For  the case whore    S    is an abstract  space,   computational  results 

are not very plentiful.     Everett   [12]   has developed  the generalized  Lagrango 



multiplier method to solve  (1.1-1), when   S    is an arbitrary set, using  (1.1-2). 

However, his method is a heuristic one and requires a complete search of the 

entirt Lagrange multiplier space.    This dilemma has been partially alleviated 

by Brocks and Geoffrion  [8] as they have shown that Everett's Lagrange multi- 

pliers may be generated by linear programming;  and In fact, the technique is 

essentially that of Dantzig's  [10] decomposition algorithm for concave programs. 

However, Dantzlg [9] had already shown that this technique could be used for 

programs defined on an abstract space by applying It to the linear optimal 

control problem. 

In this paper we present a unifying theoretical foundation, and associated 

computational procedures,  for the concepts introduced above.    In Chapter 2 we 

derive many of the properties of the functions    P(y)    and   L(u)  .    L(u)     Is 
m 

shown under rather weak assumptions to be a convex continuous function of    u 

for all    u > 0 .    Then assuming that   P(y)    is a concave program, the behavior 

of the resources utilized as a function of their associated Lsgrange multipliers 

Is shown to be regular.    A conjugate duality theory relating   P(y)    and    L(u) 

is then presented.    The theory is related to the work of Rockafellar [23]; 
I 

however,  the proofs rely on well-known results In the literature.    Further, | 

some of the conditions obtained are not demonstrable by the usual separation 

arguments.    The theory Is such that any point that is classically "dual" 

feasible in the sense of Wolfe  [29] is also dual feasible In our sense.    How- 

ever, our dual problem is always a convex program,  is defined without reference 

to differentiability, and is meaningful for abstract spaces. 

In Chapter 3, we employ the theoretical results of Chapter 2 to develop 

a dual algorithm.    This algorithm is shown to be  the logical dual of Dantzig's , 

[10] decomposition algorithm for concave programs.    Dantzig's algorithm is 

then extended to a primal-dual procedure which it  is argued should improve 

the convergence properties of the algorithm.    Finally,  some nonconvex problems 

ma/ be handled by the dual algorithm and  these are pointed out. 
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Since an economic problem was the Impetus for some of the theoretical 
I 

results presented, In Chapter 4 we formulate an economic example for which 

the theory is applicable.    The problem, first posed by Arrow, Beckmann and 

Karlin [1], is the optimal adjustment of the capacity of a firm.    We formulate 

a rather complicated version and then use the notion cf a homo the tic production 

function, due to Shepherd  [24], to reduce it to a more workable form.    The 

example Indicates that fairly complex problems may be handled by the algorithms 

proposed, if efficient techniques are available for the solution of the 

Lagrangian subproblems. 



1.2  FORMULATION OF THE CONSTRAINED MAXIMIZATION PROBLEM 

I We will consider the following rather general formulation of a 

structured program defined on the product of a finite number of arbitrary 

sets.  For applications these sets will always be subsets of some 

topological space. The problem specifically is 

(1.2-1) Max I    Hk(zk) 
keK 

(1.2-2) I    Gk(zk) < d. J e J 
keK ■'      J 

(1.2-3) zk c Sk , k c K . 

The index sets J - {1,2, ..., J) and K -  {1,2, ..., K) are finite. 

S , k c K are arbitrary sets not  necessarily In Euclidian n-space. 

k k       k k k 
H (z ) and G.(z ), J c J are functionals defined on S , and 

d * (d., ..., d )c E  is a given vector in Euclidian J-space. Throughout, 

functionals will always  be real-valued; but the Sun of a functional may be 

infinite. Topological spaces will always  be real linear topological spaces. 

Finally, if S is said to be a convex set, it will be understood that we 

mean a convex subset of a linear space. For convenience, we will often use 

the following notation 

Max H(z) 
(1.2-A) G(z) < d 

z c S 

to simplify the writing of (1.2-1), (1.2-2) and (1.2-3). It will be under- 

stood that the two systems are identical. 

A convenient interpretation of the above formulation is in terms of the 

so-called cell problem.  S  is then the set of allowable strategies in the 



«n 

th k    k k        k k        cell.    H (z )    is the payoff from utilizing strategy    z    c S      in the 

k        cell.    G.(z)    is the amount of the    J        resource consumed by utilizing 
k It th k    k 

t    c S      in the   k   '    cell.     (If    G. (z )    is negative,  it can be thought of 

as the amount of the    j        resource produced.)      ^    G.(z ) < d.    J  c J 
kcK    J "   J 

requires that the amount of resources utilized be bounded above by the 

available resources.    The problem is then to choose that set of strategies 

1      K   1        K 
(z z ) e S x ... x S  that maximizes the total payoff without 

exceeding the available resources. The cell problem received its name from 

considering the associated Lagrangian maximization problem. 

(1.2-5)    L(u) - Sup j I    Hk(zk) -  I u. I I Gk(zk) - d.] 
(keK JcJ :'  kcK J      J 

k   k 
« c S , k e K 

By Interchanging the order of summation and noting that the problem is 

defined on the product space,   (1.2-5) can be evaluated by solving subproblems 

over the individual cells of the form 

(1.2-6)        Lk(u) -      Sup     {Hk(zk) -      I   u.   G)(zk)} k c K 

zkcSk W 
J     j 

and noting that 

(1.2-7) L(u)  -      I    Lk(u) +      I    u d    . 
kcK JcJ    J  3 

Note that if    S      for    keK    are convex polyhedral sets In Euclidian 

k        nk k    k spaces of appropriate dimension, say    S   c E        for    keK, and    H  (z )   , 

k    k G. (z )     for    J  e J    and    keK    are linear functions, we have the  familiar 

structure of a decomposition linear program.    However,   the optimization 

techniques  to be presented are basically for convex programming problems 

as  the additional special structure present in linear programming problems 

is not utilized. 



1.3 THE OPTIMALITY CONDITIONS 

We will state without proof the well-known results concerning necessary 

and sufficient optlmallty conditions for functional programming on general 

spaces. These conditions are the obvious generalization of the familiar 

Kuhn-Tucker conditions [19]. The proof may be found in Hurwicz [17] by 

specializing his theorems V.l and V.3.1. 

Theorem 1' 

(i)    Sufficiency 

Let    S    be an arbitrary set, H(z)  a functional defined on    S   , 

G(z) a vector of functionals defined on    S  , and    u    and    d 

vectors in Euclidian    J-space,    E    .     If there exists 

z c S    and    u >, 0    such that 

(1.3-1)     H(z)-u-(G(z)-d]>H(z)-u-[G(z)-d]>iH(z)-u-[G(z)-d] 

V   u ^ 0 Vz e S 

then    z is optimal for the constrained maximization problem 

(1.2-4). 

(ii) Neoeasity 

Let S be a convex set, H(z) a concave functional defined 

on S , G(z) a vector of convex functionals defined on S , 

and u and d vectors in Euclidian J-space, E . In order 

that z be optimal for the constrained maximization problem 

(1.2-4) It is necessary that there exist u ^ 0 and u c E^ 

u    > 0    such  that o — 

(1.3-2)  u H(z)-u-[G(z)-d]>u H(z)-ü.[G(z)-d]>u H(z)-ü-[G(z)-d] 
O 0 0 

Vu>0 VZES 



Further,   if there exists some    z      such  that 

(1.3-3) G(z0)  < d 

then u > 0 and (1.3-2) reduces to (1.3-1) by dividing by 

u ; and In this case 
o 

(1.3-4) 
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CHAPTER 2 

THEORETICAL FOUNDATIONS 

2.1 THE LAGRANGIAN MAXIMIZATION PROBLEM 

The purpose of this chapter Is to develop some of the important 

relationships between the usual constrained maximization problem and the 

associated Lagrangian maximization problem.  The former will be considered 

as a function of its right hand side and the latter as a function of the 

Lagrange multipliers.  In this section no assumptions concerning continuity 

or convexity are made.  The constrained maximization problem (1.2-4) as a 

function of its right hand side is 

!   • 

(2.1-1) 

P(y) - SupH(z) 

G(z) <.y 

z c S 

where the domain of definition of the function P(y) is 

(2.1-2) Y - {y | y > G(z), z c S, P(y) > - « } . 

S is an arbitrary set, H(z) a functional defined on S , and G(z) a 

J-dimensional vector of functionals defined on S . The associated 

Lagrangian maximization problem, with y - 0 , is 

(2.1-3) L(u) 
o 

Sup {H(z) - u • G(z)} 
zcS 

u > 0 

where    u c E      is a vector in Euclidian J-space.     Throughout,   functionals 

will always assume real values. 

The following  theorem is a minor extension of  the "Main Theorem" of 

Everett  (12 J    and relates the solution of  the Lagrangian maximization 

probten to a particular constrained maximization problem. 



n 

Theorem 2: 

Let    S    be an arbitrary set,    H(z)    a  functional defined on    S   ,  and 

G(z)    a vector of functlonals defined on    S  .    If    z(u)     solves,  the 

Lagranglan maximization problem for some    u _> 0  ,  I.e., 

(2.1-A)     H(z(u))  - ü  •  G(z(ü))  = Max/H(z)  - u  '  G(z)l 
zeS^ ' 

then    z(u)     is optimal  for the following constrained maximization 

problem 

Max H(z) 

(2.1-5) G(z)   < y 

z c S 

where 

(2.1-6) 
y    - G (2(5))    if    ü    > 0 

yi  > G^z^))    if    ü    = 0 

■ 

Proof; 

Since    z(u)     maximizes the Lagrangrangian  for    u ^ 0    by   (2.1-A), wo havt 

H(z(5))  - Ü  *   [G(r(ü)) - y]  > H(z)  - Ü  -   [G(z) - y]        Vz  e S   . 

Further, since z(u) Is feasible for G(z) <. y by (2.1-6), we have 

for u >, 0 . 

H(i(ü)) - u • [G(zäi)) - yj i HÜ(G)) - u • [G(i(G)) - y]    v  u > 0 . 

Hence we have satisfied the sufficient  conditions of Theorem 1,   Section 

(1.3),  and thus       z(u)    solves  the  constrained maximization problom. 

Using Theorem 2,  we  can now show  that  solving  the  I.agranßian 

maximization  problem defines a  linear supporting  function  of  the  con- 

strained maximization problrn considered  as a function of   Its   ripht hand 

side.  I.e.,    P(y)   . 
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Definitions: 

(1)      it_(x) - w • x + IT_(0)    Is a linear supporting function of 
X _ X 

F(x) at some x c r , where r is the domain of definition 

of F(x) , If 

(2.1-7)       n_(x) - F(x)  and 
x 

(2.1-8)       ir_(x) > F(x) V x e F 
x 

(ii) Tr_(x) - w • x + n_(0) Is a linear bounding function of 
x x 

F(x) , where T    is the domain of definition of F(x) , if 

(2.1-9)       IT_(X) > F(x) V x c F 
x 

Theorem 3; 

Let S be an arbitrary set, H(z)  a functional defined on S , 

and G(z) a vector of functlonals defined on S . If z(ü)  solves 

the Lagrangian maximization problem for some ü > 0 , i.e., 

H(2(u)) - u • G(z(u)) - Max{H(z) - Ü • G(z)} , 
zeS 

then 

ir_(y) - u • y + L (u) 

y 

is a linear supporting function of P(y) at y e Y where 

yj - G^izM)    if Gj > 0 

y > G Ü(ü))  if Ü - 0 
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Proof: 

Sup{H(z) - u • G(z)} - L (Ü) 
zeS 

or equivalently 

H(z) < u • G(z) + L (u) V z t S . 
■ o 

Consider z(u)  defined above such that 

H(2(u)) - u • G(z(u)) + L (u) 
o 

P(y) " Sup   H(z)  • H(z(G)) = ü • y + L (Ü) 
G(z) < y 0 

z e S 

The above holds with equality by Theorem 2. Hence, we have that 

P(y) - u • y + Lo(u) 

and we now must show that 

P(y)  < ü  •  y + Lo(G)   V   y  e Y 

Consider arbitrary    y e Y  .    Since 

H(z)   < u  •  G(z) + L  (G)    V   z  e  S  , 

we can unite 

P(y)   = Sup       H(z)   .  <  Sup{ü   •  G(z).+ L  (Ü))   < ü   .   y + L   (ü) 
G(z)  < y ' G(z)   < y      0 " 0 

z e S z  c S 

where the last  Inequality holds since    ü  > 0  .    Noting that    y  c Y 

Is arbitrary,  we have the desired result   that 



u 

P(y)  <u-y+L(ü)   VycY. ■ o 

'lence    T_(y)  •» u  •  y + L  (u)     is a linear supporting function 
y        _ 

of    P(y)    at    y e Y . 

If the Sup is not attained in the Lagranglan maximization problem, 

then u • y + L(u) only defines a linear bounding function of P(y) , 

I.e., 

(2.1-10) ü • y + L(M)  >  P(y) VycY. 

We now demonstrate    L  (u)    is a convex and continuous function of 
o 

u for all u > 0 . 

Definition; 

A function F(x) , defined on a convex set r , is convex If for 

1  2 
x , x c T and 0 < a < 1 mm 

(2.1-11) F(a x1 + (l-a)x2) < a F(x1) + (1-a) F(x2) . 

Theorem 4: 

Let S be an arbitrary set, H(z) a functional defined on S , 

and G(z) a vector of functionals defined on S . Then L (u) 
o 

is convex in u for all u > 0 . 

Proof: 

1   2 
To show L(u) convex, let u , u E (u |u > 0} and 0 < a < 1 

L (a u1 + (l-a)u2) - Sup{H(z) - (a u1 + (l-a)u2) • G(z)} 
0 zeS 

- Sup{a(H(z) - u1 • G(z)] + (l-a)[H(z) - u2 . C(z)]} 
ztS 
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< Sup a(H(2) - u1 • G(z)] + Sup (l-a)(H(z) - u2 • G(z)) 
zeS zcS 

L (a u1 + (l-a)u2) < a L (u1) + (1-a) L (u2) . 
o ■   o o 

Hence L (u)  Is convex in u for all u > 0 o " 

Definitions; 

(i)  A functional F(x) on a topologlcal space T    is lower semi- 

continuous if the level set 

(2.1-12)        {x | F(x) < a} 

Is closed for each real a . 

(11) A functional F(x) on a topological space T    is upper semi- 

continuous if the level set 

(2.1-13)        {x | F(x) > a] 

is  closed for each real a . 

Note that if a functional is both lower and upper semi-continuous 

It is continuous. 

Theorem 5; 

Let S be an arbitrary set,  H(z) a functional defined on S , 

and G(z) a vector of functionals defined on S . Then L (u)  is 
o 

continuous in u for all u > 0 . 
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Proof: 

By the theorem due to Gale, Klee, and Rockafellar [IS], a convex 

function is upper semi-continuous on a convex polytope. Since the 

set (u | u > 0} , on which L (u) is defined, is a convex polytope, 

we need only show that L (u) is lower semi-continuous on this set. 
o 

Assume that for some real a the level set. 

{x | L (u) < a) 
o   ■ 

is not closed. Then there exists a sequence (u } -»- u such that 

u c {u I u > 0} Yn and 

(*) L (un) < ö < L(G) V n . 
o    ■ 

However, 

Lo (u11) - Sup{H(2) - un • G(z)} , 
xeS 

or equivalently 

L (un) > H(z) - un • G(z) V z e S . 
o   ■ 

Since {u } -•• u , for n sufficiently large, say n > N , we have 

L (un) > H(z) - ü • G(z) V z e S, n > N 

and hence 

L (u") > Sup{H(z) - ü • G(z)} - L(u) V n > N 
o*l 

zcS 

which is a contradiction of (*). Hence,  L  (u)  is lower semi-continuous 
o 

in u for all u > 0 , which is the desired result. 

mM 
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2.2    CONTINUITY OF THE RESOURCE UTILIZATION FUNCTIONS 

One difficulty in employing Lagrangian optimization techniques is the 

discontinuous behavior of the resources utilized as a function of their 

associated Lagrange multipliers.     However, in the case of the convex program 

these discontinuities can be completely described. 

Definition: 

The amount of the    J   '    resource utilized as a function of the Lagrange 

multipliers is    G.(z(u))    where the vector G(z(u))   of such functions 

is given by 

(2.2-1) H(z(u))- u *  G(z(u)) - Max/lUz) - u •   G(z)l. 
zcS1 > 

We now Introduce convexity assumptions not previously made and prove the 

well-known result that a concave program is a concave function of its right 

hand side. 

Definition! 

A functional F(x) defined on a convex set T    is (strictly) concave 

1 2 
If for x ,x E r and 0 <^ a <, 1 

(2.2-2)     F(a x1 + (1-a) x2) (7)aF(x
1) + (1-a) F(x2) . 

Theorem 6; 

Let S be a convex set and G(z) a vector of convex functionals 

defined on S . If H(z)  is a (strictly) concave functional defined 

on S , then P(y) is a (strictly) concave function defined on 

Y - (y | y >!G(z), z e S, P(y) > - « } . 

Proof: 

Let y , y  £ Y and define y » a y + (l-a)y  , 
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12       a 
where 0 < a < 1 .  Let  z , z  and z  be optimal solutions to 

12a 1 
(2.1-1)    corresponding to    y  ,  y      arJ    y      respectively.    Since    z 

2 
and    z      are feasible and    G(z)    convex,   then for    0 < o < 1    we have 

G(o z1 4   (l-a)z2)  < a GCz1) + (1-a) G(z2)  <  a y1 +  (l-a)y2  . 

12 12 
Hence a z + (l-a)z  is feasible for P(a y + (l-a)y ) , but not 

necessarily optimal. Thus 

H(za) > H(a z1 + (l-a)z2) . 

If H(z)  (strictly) concave then 

H(za) > H(a z1 + (l-o)z2)  > a H(z1) + (1-a) H(z2) 

(>) 

Thus P(a y1 + (l-a)y2)  > a P(y1) + (1-a) P(y2) . 

(>) 

Using Theorems 3, 5, and 6, we now demonstrate that under the usual 

convexity assumptions, if one or more of the resource utilization functions 

are ^.scontlnuous at some u , then we are In fact on a linear segment of the 

function P(y) . Further, if the objective function of the constrained max- 

imization problem is strictly convex, then the resource utilization functions 

are continuous. Hence, the following two theorems. 

Theorem 7; 

Let S be a convex set, H(z) a concave functional defined on S , 

G(z) a vector of convex functionals defined on S , and let the indicated 

Max exist for u c {u | u > 0} 0 N(u) , where N(u)  is a neighborhood 

of u .  If some G.(z(u))  is discontinuous at u , where the vector 

G(z(u)) of such functions is defined by 
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HÜ(u)) - u • G(z(u)) - MaxUUz) - u • G(z)) , 
zeS 

that Is, there exists a sequence {u } -► u as n -* *>    such that 

Lim inf G(z(un)) - y ^ y -= Llm sup G(z(un)) 
n -> « n ••■ » 

then for 0 < a < 1 , 

P(a y + (l-a)y) = a P^) + (l-a) P(y). 

Proof; 

n n(y) » u • y + Lo(u ) 

y 

Is a linear supporting function of P(y) at y = G(z(u )) by Theorem 

3.  As {u } -► u , L (u ) -> L (u) by Theorem 5, thus 

Tt.(y) - TT_(y) - u * y + L (u) . 

y    y 

Hence,     u  • y + L  (u)     Is a  linear supporting function of    P(y)    at 

both    y    and    y   ,  but    y ¥ y    by  the assumed discontinuity  of some 

G  (z(u))    at    ü  .     For    0 <. a 4 1   , 

a:  ü *  y + L (u)  = P(y) 

(l-o):  ü  '  y + L  (ü)  -= P(y) 
0 

Thus,  u(a y + (l-o)y) + L (ü) •= a P(y) + (l-o) P(y)  and by the 

concavity of P(y) , Implied by Theorem 6 and the concavity of H(z) , 

we have 

(*)   u * (a y + (l-o)y) + Lo(ü) < P(a y + (l-a)y) . 
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Now since    u  *  y + L (u)    is a linear supporting function of    P(y) 

u   •   y + Lo(u)   >. P(y) Vy  e  Y  . 

(a y + (l-a)y)   c Y  ,  since    G(z)    is a vector of convex functions  and 

S    Is a convex set.    Hence 

u *   (a y + (l-a)y) + L (u)  > P(a y + (l-a)y) 

which, with (*), implies 

u * (a y + (l-a)y) + L (u) « P(a y + (l-a)y) 

o(u ' y + L (u)) + (l-a)[u ' y + L (u)] - P(a y + (l-a)y) 

a P(y) + (1-a) P(y) - P(a y + (l-a)y) . 

Theorem 8; 

Let S be a convex set, G(z) a vector of convex functionals defined 

on S , and let the Indicated Max exist for u e {u | u >, 0} p N(u) , 

where N(u) is a neighborhood of u .  If H(z) is a strictly  concave 

functional defined on S , then G(2(u)) , defined by 

H(z(u)) - u • G(z(u)) - Max {H(z) - u * G(z)} , 
zcS 

is a vector of functionals continuous at    u . 

Proof: 

Since H(z)  is strictly concave, H(z)  is also concave and the 

hypothesis of Theorem 6 is satisfied.  Therefore, if some G (z(u)) 

is discontinuous at  u , that is, there exists a sequence  {u } -♦ u 

such that 
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11m inf G(z(u )) ■ y / y ■ 11m sup G(z(u)) 
n -» » 

then for    0 ^ a ,< 1  , 

P(a y + (l-a)y) - a P(y) +  (1-a)  P(y)   . 

But    H(z)    Is strictly concave Implies    P(y)    Is etriotly concave by 

Theorem 6 and thus for    y t y 

P(a y + (1-a))   > a P(y) +  (1-a) P(y) 

which is a contradiction.  Hence G(z(u)) is a vector of functions 

continuous at u . 
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2.3 CONJUGATE DUALITY THEORHNS 

In thin  section we Join the present trend toward a general symmetric 

duality theory and present three computationally useful duality theorems, 

the proofs of which rely on well-known results in the literature.  In order 

to avoid complicating the presentation with existence considerations, we will 

for the present employ Sup and Inf instead of Max and Min. The constrained 

maximization problem will be called the primal problem. 

(2.3-1) Sup H(z) 
G(z) < d 

z c"s 

The feasible region of the primal problem is the set 

(2.3-2)      Z - {z | z e S , G(z) < d , H(z) > - »} . 

The associated Lagranglan maximization problem when the right hand side of 

the constrained maximization problem is explicitly Included is 

(2.3-3)       L(u) - Sup {H(z) - u . [G(z) - d]} . 
zeS 

We now Introduce a related problem first treated by Huard [16] and referred 

to by Falk [13] as the auxiliary problem.  It will here be called the dual 

problem. 

(2.3-A) Inf L(u) 
u > 0 

The feasible region of the dual problem is the set 

(2.3-5) U » {u | u > 0 , L(u) < + »} . 

To show that (2.3-1) and (2.3-A) can indeed be considered as dual to one 

another, we demonstrate the usual results concerning weak ordering of the 

objectives, existence, infeasibility, and optimallty. The following theorem 
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is essentially due  to Karamardian   (18);  however,  here the domain of definition 

of the functlonals is not  restricted to Euclidian    n-space. 

For completeness we adopt the following conventions, which may  in  fact 

be argued by contradiction. 

(2.3-6) Sup H(z) - - »o 

(2.3-7) Inf L(u) - + - 
ue^) 

Theorem 9: 

Let S be an arbitrary set, HCz) a functional defined on S , G(z) 

a vector of functlonals defined on S , and let Z and Ü be defined 

by  (2.3-2)  and   (2.3-5)   respectively.     Then 

(I) Weak Duality 

Sup H(z)  < Inf L(u) 
ztZ ueU 

(II) Existence 

If    14$    and    U j* 4»    then both primal and dual have finit 

optimal  solutions,  i.e., 

c 

- • < Sup H(z) < + » and + « > It,f L(u) > 
zeZ ueU 

(111) Infeasibility 

(a) If U ^ 41 and Inf L(u) = - « , then Z « $ 
ueU 

(b) If    Z + $    and Sup H(z) «= + » , then U >= $ 
ZGZ 

(Iv) Optimality 

If z t Z , u e U , and H(z) «= L(u) , then H(z) = Sup HCz) 
ztZ 

and L(u) «= Inf L(u) 
UEU 
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|; 

Proof: 

(1) Consider any z c Z and u e U 

Sup/H(z) - Z  • [G(z) - djl- L(ü) 
zeS' ' 

Since the Sup is not necessarily attained at z , we have 

H(i) - G • (G(z) - d] ,< L(G) . 

z c Z    Implies    G(z) r< d    and    u c U    Implies    u :> 0  . 

Therefore    - ü •   (G(z) - d] ^ 0    and hence 

H(i)   <, H(z) - ü  •   [Gil) - d]  <. L(ü) 

Since z c Z and ü c U are arbitrary we have 

Sup H(z) <, Inf L(u) 
zeZ      ucU 

(11) For any z e Z and u c U , we have from (1) and the definitions 

of Z and U that - • < Sup H(z) 4 Inf L(u) <, L(ü) < + » 
zcS      ucU 

+ « > Inf L(u) > Sup H(z) >. H(z) > - « 
ucU      zeS 

(ill) Follows immediately from (li) by contradiction 
A A 

(iv) Using (1) and the fact that z and u may not be optimal for the 

primal and dual respectively, we have 

H(z) <Sup H(z) < InfL(u) < L(u) 
zeZ      ucU 

But since H(z) « L(ü) , equality must hold throughout which is the 

desired result. 
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In order to obtain the strong duality result that the objective 

function of the primal Is, under the appropriate assumptions, equal to the 

objective function of the dual, we will employ some of the general minimax 

theorems due to Slon [26] and Fan [14]. However, first we must prove a 

minor extension of a lemma due to Karamardlan [ 18]. Here again the domain 

of definition of the functlonals is not restricted to euclidlan n-space. 

Lemma 10: 

Let S be an arbitrary set, H(z) a functional defined on S , and 

G(z) a vector of functionals defined on S . If K.. and K_ are 

defined by 

K. - ju, z | z G S, H(z) - u • lG(z) - d] = Inf {H(z) - v • lG(z) - d]}! 
' v>0 ' 

K- » {u, z | z e S, u > 0, G(z) < d, u • [G(z) - d] ■= 0} , 

and the set  {z | z e S, G(z) < d} is not empty, then K. = K . 

Proof; 

(i) Show K. C K2 

Let  (z, u) e K,  be arbitrary.  Hence z e S, u > 0 and 

H(z) - u • [G(z) - d] •= Inf {H(z) - v • [G(z) - d]} 
v>0 

which Implies 

(*)      0 < (ü - v) • [G(z) - d]  V v > 0 

Hence G. (z) < d. V j E J , since if not, setting 

v. « u.  when G (z) < d  and 
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v > u  when H (z) > d. , 

leads to a contradiction of (*). Finally, u >, 0 and G(z) < d 

imply ü • (0(2) - d] ^ 0 , and letting v - 0 in (*) we have 

ü • (G(z) - d) >, 0 ; hence ü ■ [G(z) - d] - 0 . 

Therefore (z, u) c K  and Kj c K2 ■ 

(ii)    Show K c K 

Let  (z, u) e K. be arbitrary. Hence z c S and 

H(i) - ü • [G(z)-d)«"H(i)<H(i) -v • [G(z) - d]    Vv > 0 • 
m 

Or equivalently, 

H(z)  - u '   [G(z)  - d]  - Inf    H(z) - v  "   [G(z)  - d] ,  since    ü   > 0 
v>o 

Therefore    (z, u)  e K-    and    K2 C Kl  * 

(1)    and    (il)    imply    ^ - K2  . 

We may now prove the following duality theorems.     Euclidian J-space 

has the usual tooology throughout,  and    S    has an unspecified  topology in 

Theorems 11 and 12, while It Is merely a convex set in Corollary 13. 

Definitions: 

(I) A functional    F(x), defined on a convex set    V  ,  is quasi-convex on    T 

1      2 
If for    x  , x      ef    and    0 ^ a <_ 1 

(2.3-8) FCax1 + (1 - o)x2)4 Max  [FCx1),  F(x2)] 

(II) A functional    F(x),  defined on a  convex set    T  ,  is quasi-concave on 

1      2 
F    if for    x , x    c T    and   0   4 a 4 1 

(2.3-9) F(ax1 + (1 - a)x2)  > Min  (F(x1),  F(x2)l   . 
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Tlicorftn 11:     Duality  Theo ran (i) 

Let    S    be a convex,  compact subset of a  topologlcal space and 

H(z)  -  u  *   (G(z)   - d]     a  functional  definod on    S  x  {u  c  E     |   u  :>  0)   , 

quasi-concave and upper senl-contlnuous   In    z    for all    u ^ 0  .     Then 

Sup    H(z)      -  Inf L(u) 
G(z)   <_ d      u^O 

z c S 

Proof: 

Sln.e H(z) - u • [G(z) - d]  is linear and continuous in u 

tor all z c S , it is quasi-convex and lover semi-continuous 

Jn u  for all  z t S .  Noting that  H(z) - u ' [G(z) - d]  is 

quasi-concave and upper semi-continuous on S for all u ^ 0 

and tMt  S is compact, we have satisfied the conditions of 

Sic.i's minlmax theorem [26], and wc have 

(*)  Sup Inf{H(z) - u • [G(z) - d]} - Inf Sup{H(z) - u ' [G(z) - d)} 
Zf£ u>0 u>0 ZES 

The right-hand side is by definition the dual problem; and applying 

Lemma 10, the left-hand side reduces to the primal problem.  Hence 

when the primal problem is feasibic, we have 

Sup H(z)  « Inf L(u) 
G(z) < d  u>0 

z c S 

If the primal problem is infeasible due  to    S * $   ,  then the desired 

result  is  immediate  from (2.3-6).     Otherwise, 

See Lemma A of Appendix A for a statement  of  Sion's  theorem. 
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If   there does not exist a primal feasible solution,   then 

Inf {H(z)  - u  •   [G(z)]) - - »        y z  E S 
u>p 

which Implies that    Inf L(u) - - »    by  (*);  and 
u>p 

noting equation (2.3-6), the proof is complete. 

We define the graph of the function P(y) as the set 

(2.3-10) Y0 

recalling that 

Y ■ {vy ' yo-p(y)} 

(2-3-11) P(y)  -  Sup H(z) 
G(z)  < d 

z c S 

and 

(2.3-12) Y -  {y  |  y  > G(z),  z  t S,  P(y)  > - -}   . 

Theorem 12; Duality Theorem  (li) 

Let    S    be a convex space,  H(z)    a concave functional defined on    S  ,  and 

G(z)    a vector of convex functlonals defined on    S  .     If    Y0 ,  the graph 

of    P(y), Is closed then 

Sup H(2)  -  Inf L(u) 
G(z) ^ d        u ^ 0 

z  c S " 

Proof; 

Since the graph of    P(y)     is closed and convex,   It has a support at 

every boundary point.     Hence if the primal problem has a feasible solution 

it has an optimal solution.     By  the necessary  conditions of Theorem 1, 

Section  (1.3),   If    z  c  S     is  optimal  for the primal problem then  there 
1 

exists    u > 0    and    uÄ t  E     ,  u    > 0    such that 
•» o O " 
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u ii(z) - u • [c;(z) - <i] > u n(z) - u • (r.(z) - d) > 
o r- o 
Vu > o 

>  u H(z) - u • IG(Z) - d] , 
V Z E S 

Equlvalently, 

Inf {u H(z) - u • (G(z) - 1]) = Sup {u H(z) - u • (G(z) - d]} 
u>0  0 ztS  0 

which, noting that z and u are particular values, Implies 

Sup Inf {u H(z) - u • [G(z) -  d]} > 
zcS u^O 

> Inf Sup {u H(z) - u • [G(z) - d)} . 
^ u>0 zeS  0 

If u  > 0 , we can divide by u  , and applying Lemma 10 to the left hanti 

side and the definition of L(u) to the right hand side, we have 

Sup H(z)  > Inf L(u) . 
GCz) < d " u>0 
Z E. S 

Noting  the weak duality  of  Theorem 9(i)      equality must hold which  is 

the desired result.     If    u    = 0  ,   let    u    =  e  ,   and by  the same argument. 

Sup H(z) 
G(z) < d 

Z E=S 

Inf if-) - Inf L(v) - Inf I (v) 
u>0  ^e^  ev>0     v>0 

Hence, if the primal problem is feasible the theorem holds.  If the 

primal problem is infeaslble due to S = $ , then the desired result is 

Immediate from (2.3-6).  Otherwise we can take u  arbitrarily large in 

L(u) = Sup {H(z) - u • [G(z) - d]} 
ZES 

since for any z t S an infoaslble nrimal implies  G (z) > d,  for some 

j e J .  Hence inf L(u) = - » and noting equation (2.3-6), the proof is 
u>_0 

complete. 
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In mathematical programming It is customary to define Max and Min 

over the extended real line; that is, the points 4*° and -tD are 

permissable. Furthermore, it is always tacitly assumed that the primal 

problem (2.3-1) may be written with Sup replaced by Max. However, these 

conventions are not  sufficient to replace Inf by Min in the dual problem as 

Slater's (17) famous counter-example points out.  To insure that Sup and 

Inf may be replaced by Max and Min respectively in the above duality theorems, 

we must assume a constraint qualification. Noting the previous proof and 

the necessary conditions of Theorem 1, we get the following expected result. 

Corollary 13; Duality Theorem (Hi) 

Let S be a convex set, H(z) a concave functional defined on S , 

and G(z) a vector of convex functlonals defined on S . If there 

exists .«n optimal solution to the primal problem and z  such that 

G(z0) < d , then 

Max H(z)   - Min L(u) 
G(z) <, d      u Jl 0 
z e S 

If there exists an optimal solution to the primal problem and a nonempty 

Interior of the constraints,  then Sup and Inf may be replaced by Max and Min 

respectively throughout this section, except in the definition of    L(u)   . 

If  the Sup is always attained, which is  the case If    S    is compact,  then Sup 

may be replaced by Max also in the definition of    L(u)   .    For further 

comments on the existence of    L(u)   , see Section  (2.^). 

Theorem 11 gives rather weak conditions on the  functlonals for a strong 

duality  theorem,  as will be brought out in Section  (3.4)  on N'onconvex 

Considerations.    However,   the condition of compactness of    S    is not always 

satisfied.    When    S    is not  compact and  the primal  is a concave program with 

closed graph. Theorem 12 says  that a similar strong duality theorem holds. 
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For completeness of the theory, we note the following corollary, 

which Is an immediate consequence of any of the duality theorems and of 

equations (2.3-6) and (2.3-7). 

Corollary ]4: Unhoundedness 

Under the assumptions of Duality Theorem  (i), (il), or (ill) 

(i)  If U = * and  Z ?< * then Sup H(z) = -H» 
ZEZ 

(ii) If Z = (^ and V j $    then Inf L(u) = -» 
ucU 

We may characterize the duality theory presented as a conjugate duality 

by remarking that if the graph of r(y) is closed L(u) defines a linear 

supporting function of P(y) .  For emphasis, the conclusions of the duality 

theorems may be stated 

Sup P(y) = Inf I.(u) 
y<d       u>0 

Finally,  we should point  out   the  relationship  of  our duality with  that 

of  Wolfe   [29].     If    S    is  an open  set  in Euclidian n-space,     H(2)    a  concave 

differentiable  function defined  on    S   ,    G(z)     a vector  of  convex differrnti- 

able  functions  defined on     S   ,   tiien  a necessary condition   for a maximum or  a 

minimum of 

(2.3-14) H(z)  - u  •   lG(z) - d] 

is   that   the gradient  is  zero,   i.e., 

(2.3-15) 7H(z)  -  u  •   VG(z)  «= 0  . 

Recalling  the uual problem of Wolfe   [29], 
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(2.3-16) 

Min  H(z)  - u  •   [G(JO  - d]   , 

VH(z)  - u  •  VG(z)  - 0 

u  > 0 z c S 

we note that whenever    L(u)    is evaluated, where 

(2.3-17) L(u)  -  Sup{H(z)  - u •   [G(z)  - d]} 
zeS 

u i 0 , 

a feasible solution of (2.3-16) is determined.  However, our dual problem 

(2.3-17) Inf L(u) 
u>0 

is always a convex program,  is defined without reference to differentiability, 

and is meaningful for abstract spaces. 
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2. 't    EXISTENCE AND CJEOMETRICAL CONSIDERATIONS 

Since    L(u)  ■ L  (u)  + u  .  d  , we know  from Theorems A and 5,    L(u) 
o 

Is convex and continuous  in    u    for all    u ^ 0  .     This,  coupled with  the 

duality results of  the previous section,  suggests a computational procedure 

based on solving the dual in place of the primal problem.    However,   two 

questions remain to be considered.    When does a solution for the dual yield 

a solution for the primal,  and how is    L(u)     evaluated when the Sup Is not 

attained?    The following   theorem partially answers  the first question. 

Theorem 15: 

Let    S    be a convex set,    HCz)    a strictly  concave  functional defined 

on    S  , and    G(z)     a vector of convex  functlonals defined on S   .     If 

u    solves  the dual problem (3.2-4)  and  the graph of    P(y)    is closed, 

then    2(u)    given by 

H(2(G))  - ü •   [G(z(G))  - d] - Max  {H(z)  - ü  •   [G(z)  - d]} 
zeS 

solves the primal problem  (3.2-1). 

Proof; 

By Theorem 3,     u  •  y + L (u)     Is a linear supporting function of    P(y) 

at    y - G(z(u))   .     Hence 

u   •  G(z(u)) + L (u) = P(G(I(u)))     and 
o 

(*)      u  • y + Lo(u)   >. P(y)       Vy e Y ■=   {y   |   y > G(z),  z  e S,  P(y)   > -«} 

Further,  since    u    solves the dual problem and the graph of    P(y)     is 

closed, we have by Theorem K. that 

P(d)  - Sup    H(z)      «=  Inf L(u)  ■= ü   *   d + L  (ü)   . 
G(z) ^ d u > 0 

z  c^S 

o 
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Now,  assuming  that    z(u)    does not solve  the primal problem,  we have 

GGM) 4 d . 

Hence we may write the following string of inequalities; the first of 

which follows from the strict concavity of P(y) implied by the strict 

concavity of H(2) by Theorem 6. 

P(a G(z(G)) + (1 - o)d) > a P(G(z(ü))) + (1 - a) P(d) 

- ü ' [a G(z(u)) + (1 - a)d] + L (u) 
o 

> P(a G(z(ü)) + (1 - a)d) 

The last inequality follows from (*),  and exhibits a contradiction. 

Hence    z(u)    must solve the primal problem. 

If    H(z)    is only concave and    u    solves  the dual problem,     z(u)    does 

not necessarily solve the primal problem.     However, the regularity properties 

demonstrated In  (2.2) make it possible to construct an optimal solution for 

the primal.    An algorithm for this is given In Section (3.2). 

The second question, concerning   when the Sup is attained,  is in practice 

rather easily avoided.    Evaluating    L(u)     is itself an optimization problem 

for which termination conditions to within some preasslgned    e  > 0    are 

necessary for all but extreme point techniques that terminate in a finite 

number of steps.     The  following theorem demonstrates  that if we are within 

c    of the true value of    L(u)    then we are within    c    of the optimal value 

for the associated constrained maximization problem. 

Theorem 16: 

If z is within c > 0 of the optimal solution of the Lagranglan 

maximization problem for some u >_ 0 , i.e.. 

H(z) - ü • [G(z) - d] + £ > Sup{H(z) - ü • [G(z) - d]} = L(ü) 
" zeS 
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then    z    is within    c * 0    of the optimal solution of  the associatod 

r nstrained maximization problem, i.e.. 

H(z) + c iSup     JUz) 
G{z)   <.G(z) 

z  c S 

Proof: 

H(z) - lG(l)  - d] + c  >  Sup|H(z)  - Ü  •   [G(z) -d)l 
ztS1 / 

Hence    H(z)  - u   •   G(z) + r  > H(z)  - ü   •  G(z) Vz  e S 

or equlvalently 

(*)    H(z) +  e  >= H(z) + Ü  •   (G(i)  - G(z)] >'z  t S 

Since  (*) holds  for all    z c S  ,  It must hold for any subset  of    S   ,  in 

particular 

S -  {z   |  G(z)  < GG),  Z  t S) 

Noting that  u > 0 , we have on the set  S 

ü • (G(z) - G(z)] 4 0   V z e S 

and hence H(z) + e >_ Hfz)   V z e S 

or equlvalently 

H(z) + e > Sup  H(z) 
G(z) < G(z) 

z c S 

Hence, even though the Sup may not be attained in the definition of 

L(u) , any optimization technique used to evaluate L(u)  that comes within 

This proof Is due to Everett []2] 
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t of the Sup is sufficient for computational purposes. 

Finally, if we are to solve the convex dual problem in place of the 

primal problem, it will be useful to know the gradient of L(u)  at  u 

if it exists, or at least a subgradlent if it does not. 

Definition: 

A vector w  is a subgradient of a function F(x) at x  in 

T , where  r  is the domain of definition of F(x) , if there 

exists a scalar TT_(0) such that 
x 

(3.A-1)        ii_(x) - w • x + TI_(0) 
X x 

is a linear supporting function of F(x) at x . 

Theorem 17; 

[d - G(z(u))]    is a subgradient of    L(u)    at    u , where 

G(z(u))     is defined by 

H(z(ü))  - ü  •   [G(z(II)) - d]  - Max{H(z)  - ü •   [G(z)  - d)}   ; 
zeS 

and it  is assumed that the indicated Max exists for    u  . 

Proof; 

L(u)  •= Sup{H(z)  - u  •   [G(z)  - d]}  = H(i(u))  - u  •   [G(z(u))  - d] 
zeS 

>. H(z)  - u  •   [G(z) - d]       V   z  e  S 

Hence,   in particular, 

L(u) iH(z(ü))  - u  •   [G(z(ü))  - d] 

or equivalently 
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-L(ii) <. u • [G(z(G)) - d] - H(i(G))   V u 

which implies that there exists n (0) such that 
u 

lG(z(u)) - d] • u + TI_(0)  Is a linear supporting function of 
u 

-L(u)    at    u .    Hence    (d - G(z(ü))]     is a subgradlent of 

L(u)     at    u  . 

If the Indicated Max does not exist  for    u  ,  then there does not exist 

a support of    P(y)    with gradient    u  .     However if    z    comes within    c    of 

the optimal  solution,  i.e., 

(3.4-2)      H(z) - ü •   [G(z) - d] + c ^ Sup{H(z) - Ü  •   [G(z)  -  d]} 
ZES 

then    [d - G(z) ]    can be used as an approximate gradient, 
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CHAPTER 3 

COMPUTATIONAL PROCEDURES 

3.1    THE DECOMPOSITION ALGORITHM FOR CONCAVE PROGRAMS 

The algorithms based on  the  theory presented In  the previous chapter 

are very  closely tied to Dantzlg's   [10] decomposition algorithm for concave 

programs,  often referred to as generalized programming;   and a certain 

familiarity with this work will be assumed.    However, a brief sketch of the 

Important concepts is in order as the convergence of this algorithm will be 

assumed.     In our notation,  the problem treated by Dantzlg is 

Max    H(z) 
(3.1-1) G(z)  < d 

z c S 

where    S    is a convex compact space,    H(z)    a concave upper semi-continuous 

functional defined on    S  , aud    G(z)    is a vector of convex lower 

semi-continuous functlonals defined on    S  .    Actually,  Dantzlg restricts    S 

to be a subset of Euclidian n-space and  the functlonals  to be continuous. 

However,   the first restriction Is unnecessary for his proof,  as he himself 

points out in [9]; and the second may be weakened since a lower semi-continuous 

function is bounded below on a compact set. 

The  technique used to solve     (3.1-1) is a generalization of the simplex 

method for linear programming In which the coefficients for a column may be 

merely points drawn from a convex set.     Consider the following generalized 

linear program in the variables    X      and    s  , which is equivalent to (3.1-1). 

Max y  X Jo o 

(3.1-2) 
y  X    + Is = d 
'    o 

X «1 
o 

X     > 0,  s  > 0 
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where     (y   ,  y)     is a    J + 1    dimensional vector drawn  from the convex set 

(3.1-3) Y0 =  {yot y)   |  yo <  H(z), y > G(z),  z c  S}   .+ 

To initiate the computation, we assume we have a nondegencrate basic feasible 

solution to   (3.1-2),  i.e., 

(3.1-A) 3  z    c S    such  that    G(z )  < d . 
O 0 

Using the Simplex multipliers  u associated with this basis, the usual 

pricing out mechanism becomes the following, optimization problem, 

(3.1-5)  L(ü) = Max {H(z) - ü • [G(z) - d]} ■= H(z) - ü • \GÜ)  - d]   . 
zcS 

Hence a new point  lG(z), G(z)] c  Y  is generated and a new basis and asso- 

ciated simplex multipliers, optimal with respect to the points generated thus 

far, may be calculated; and the procedure continues.  The algorithm may be 

stated as follows. 

Algorithm 1; Decomposition Algorithm for Concave Prograns 

Step  (0)  Let R.-v " {0} be an index set whose only clement is 

associated with  z  defined in (3.1-4).  Let  B be an unper 
o 

bound on the objective function; and set B ^ <*>    and n = 0 . 

Step  (1)  Solve 

Rdi"1') - Max   J H(z ) X 
n     r  r 

(n) 

y G.(z ) x < d4    j e 

(n) 

reR. . 
(n) 

X > 0, r E R, . 
r '        (n) 

+This definition of Y0 is equivalent to (2.3-10) 
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yielding an optimal solution    X and associated optimal 

simplex multipliers    u        .    Define    z    ' -      J      z A 
reR, v r r 

Step  (2)  If B - R(u(n)) < e , STOP. 

Step  (3) Solve the Lagranglan maximization problem 

L (u(n)) - Max IH(Z) - u(n) • (G(z ) - d]! 
zeS ' ' 

yielding z .  Set B - Mln [L(u(n)), B) and define the 

Index set R, , .x by 
(n+1) 

R(n+1) " 
R(n)U{n}- 

Set    n - n + 1  , and go to Step (1)   . 

If a nondegenerate basic feasible solution Is not Initially available, 

a Phase I procedure that minimizes the degree of Infeaslblllty In the 

constraints can be used to generate one.    In this event, steps  (1) and   (2) 

are at first replaced by steps  (1') and  (2*). 

Step (I1) Solve 

Q(u(n)) - Max -      J    n. 
JeJ   J 

(n) J J J 

L       r 
rcR, v (n) 

Xr >. 0,   re R(n)  n.  >. 0    j c J 

yielding an optimal solution  (X       ,   n       )     and associated 

optimal simplex multipliers    TT .     Define 

rcR, .  r r 

(n) 
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Step  (2') If Q(i/n)) = 0 , end Phase I and BO to Step  (1) . 

The theorem shown by Dantzlg [10] Is 

Theorem 18; 

Let    S    be a convex compact space,    H(z)    a concave upper semi-continuous 

functional defined on    S   , G(z)    a vector of  convex lower seml-continuois 

functionals defined on    S   ,    z    an optimal solution to  the primal 

problem (3.1-1),  and   let     {u       }    be the sequence of multipliers 

generated by Algorithm 1.     If there exists    z     t  S    such  that    G(z   )<  d   , o o 

then 

(3.1-6) lim u(n)  = u 

(3.1-7) lim H(z(n)) = Max    H(z) 
n-x» G(z)  <, d 

z c    S 

(3.1-8) H(z) - u  '   [G(z)   - d] - Max|H(z) - u   •   [G(z) - d]| 

The generalized programming technique Is based upon the  fact that a 

convex set can be represented by a convex combination of a sufficiently 

dense set of the extreme points of the set.    Step   (3)   of the algorithm 

evaluates L(u) which, by Theorem 3 of Section  (2.1)     and  the  compactness 

of    S    defines a linear supporting function of 

(3.1-9) P(y)  -  Sup    H(z) 
G(z)  < ' 

z  e S 

and hence an extreme point of the set Y . The algorithm essentially builds 

up a convex polyhedral set within the convex set Y0.  At each iteration, the 

optimal solution over the polyhedral set Is found in order to obtain sitr.pltix 

multipliers which are then used to generate another extrer:;'. pnint of Y  , 
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and the procedure continues.  Since the optimal value of the primal objective 

function is bounded above by L(u) , being within c of the minimum value 

of L(u)  generated thus far is used as the termination criteria. The 

algorithm is referred to as a primal method in our terminology as it works 

entirely within the convex set Y  and merely uses the dual as a bound. 

Further, a primal method is a two phase procedure that first generates a 

feasible solution and then an optimal solution. 

In the statement of ehe algorithms in this chapter, if S is compact 

we will replace Sup by Max in the primal problem and in the definition of 

L(u) .  However, the constraint qualification is required to replace Inf by 

Min in the dual. 
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3.2 A DUAL ALGORITHM 

In the previous section, wc characterized a primal algorithm as one that 

depends on the fact a convex set may he represented by a sufficiently dense 

set of its extreme points.  We now consider the logical dual of these tech- 

niques and characterize a dual algorithm as one that depends on the fact that 

a convex set may be represented as the intersection of all supporting hyper- 

planes.  While a primal algorithm works entirely within the convex set Y  , 

vhere 

(32-1)    Y0 = {yo, y | y^ H(z), y > G(z), z c S} , 

a dual algorithm works entirely outside the convex set  Y .  Recall that 

the dual problem is 

(3.2-2) Inf L(u) , 
u > 0 

where the function L(u)  is given by 

(3.2-3)       L(u) « Sup JH(z) - u ' [G(z) - d]j. 

Also, whereas a primal method 1? a two phase procedure, a dual method moves 

simultaneously towards feasibility and optlmallty. 

By Theorems 3 and 4 of Section (2.1) we knov; that  L(u)  Is a convex 

continuous function of u , for all u ^0 •  Further, In Section (2.4), It 

was shown tha^ whenever L(u)  Is evaluated at some u a subgradicnt of 

L(u)  at u Is also determined.  Thus we want to minimize a convex continuous 

function, for which at least a subgradicnt Is readily available at every 

point, subject only to nonnegativity restrictions on the variables.  This 

would seem to imply that a straight-forward gradient descent technique 

would be efficient.  Huard [16] first and then Fa]k[13] have proposed this 

approach; however. In both papers L(u)  is essentially assumed d'fferentlable 
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The difficulty arises from the fact, pointed out In Section (2.A), that the 

primal solution z(u) associated with an optimal solution of the dual may 

not be feasible if L(u)  Is not differentiable at u . Therefore, any 

proposed algorithm that solves the dual problem in order to solve the primal 

must also construct an optimal feasible  primal solution. 

We first give a gradient descent algorithm for solving the dual problem. 

Then for those problems where the solution z(u) associated with the optimal 

dual solution Is not primal feasible, a perturbation algorithm is given that 

constructs a primal feasible solution. The algorithm for the dual Is 

Algorithm 2; Gradient Deaaent Algorithm 

Step  (0) Set u(0) - + » , L(u(0)) - + « , u(1) - 0 , and n - 1 . 

Step  (1) Compute L(u(n)) and a .  adient of L(u) at u(n^ by 

solving the Lagrangian maximization problem 

L(u) - Max 1H(Z) - u(n) • [G(z) - d]| 
zcS ' » 

yielding an optimal solution z(u  ) . 

Step  (2) If L(u(n)) < L(u(n'1)) , then define 

6j
(n) - j dj - GsG(u(Ti)))  if G^Ku^h)^ dj or uj^O 

(0 If G (i(u(n)))<d and u(n)-0 

If 6jn) - 0 , STOP. 

Determine a new set of Lagrange multipliers by 

u    ■ u   - 6 6   where 6 Is a scalar such that 

,,...,- ...... e , -4-7 

and e Is the maximum step size.  Set n - n + 1 and go to 

Step 1. 

; 

«<n> . o! 
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Step  (3) If 0 < L(u(n)) - L(u(n,*1)) < e and | u(n) - u^"1^ < 6 . 

where t and &    are preasslgned numbers, then STOP. Other- 

wise, set  6 - 6/2 and go to Step  (1). 

Theorem 19; 

Let S be a convex compact space, H(z) a concave functional defined 

on S , G(z) a vector of convex functions defined on S , and let 

(u  } be the sequence of multipliers generated by Algorithm 2. 

If there exists z c S such that G(z)  < d , then 

(3.2-A) Um uM  - u 
n-H» 

(3.2-5)        11m L(u(n)) - Inf L(u) 
n-H»        u>0 

Proof; 

L(u  ) Is a strictly decreasing sequence of real numbers bounded from 

below by the primal objective function, which must be finite since z 

is primal feasible; hence L(u  ) converges.  The sequence {u  } 

converges to u , since termination takes place only if 6   ■ 0 or 

| u   - u     | < 6  , one of which must occur since L(u)  is a con- 

tinuous function of u  for all u ^ 0 by Theorem 4. Assume, for the 

purpose of contradiction, that L(u)  is not optimal for the dual. 

Then let 

« -^d. - G (z(u)) if G (z(u)) >. d  or u > 0 

(o if G (z(u)) < d and u - 0 

where 6^0, since we would then be optimal. Consider u - 9 6 . 

By the convexity of L(u) and the termination of the algorithm, wc 

have 

Mi 
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(i) 0 >, L(u) - L(u - 66) >. 06 • [D - G(z(u - 96))) ; 

and by the definition of 6 , we have 

(ii) 66(0 - G(z(u))) > 0 

L(u) 

(u - 66) u     u 

Hence a subgradient at    u    is positive and a subgradient at    u - 66 

is negative.    This Implies  that there exists a point in-between with 
A 

a subgradient of zero. Hence either L(u) is optimal to the dual or 

A A A A 

there exists 6 such that L(u - 66) < L(u) and the algorithm would 

not have terminated, which is a contradiction. 

A A 

If u is an optimal solution to the dual problem such that 6 - 0 , 

then by the definition of 6 

(3.2-6) If u. > 0  then G (z(u)) - d 

If G (*(u)) < d  then u - 0 . 

Therefore,    6-0    Implies  that    z(u)    is a feasible solution to the 

primal problem,  and hence optimal by Theorem 9(iv)  Section (2.3).    However, 

if    z(u)  is not a feasible solution to the primal,  then essentially a Phase  I 

type procedure must be instituted.    The following perturbation algorithm will 

construct the desired optimal feasible solution to the primal. 

■i^Ba 
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Algorithm 3; 

Step  (0)    Given    u   ,   the optimal dual solution resulting from Algorithm 

2, and    z(u)    its associated primal Infeasible solution,   let 

R-  .  s   {0}    be an index set whose only element is associated 

-   * (0)       * with    z(u)   .    Set    u        ■ u    and    n - 0 . 

Step (1)    Solve 

(n) Q(u^n;) - Max -    I      n. 
JcJ      ^ 

I     GAz )X    -    n. < d.       j c J 
(n) ^    r    r J -   J 

ttK(  v 
Xr > 0 , r c R(n),  nj  > 0,  J  c J 

yielding an optimal solution    (X       ,n      )    and associated 

(n) (n) optimal simplex multipliers    v .    Define    z        »    T      -  ^ (n) 
RZ A 

/ \ r r 
(n) 

5tep (2)  If Q(u(n)) - 0 , STOP. 

Step  (3)  Otherwise, Q(u  ) < 0 and determine new Lagrange multipliers 

by u^n+1) - u(n) + 9TT(n) where 0 is in the interval 

,(n) 

0 < 6 < Mini 6, -JT .<■»  < 0 

and    6    is an upper bounded on  the step size. 

Step (4)    Solve 

L(u(n))- Max{H(z)  - u(n)   •   [G(z)   -  d]} 
ECS 

yielding an optimal solution    z     .     If n 
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,(n), 0 < L(u  ) - L(u) < t , then define the index set  R, ,,v 
" (n+1) 

by R( +1) " R(n)U ^ and 80 t0 Step ^'    0therv'i8e« 

set 9 - 6/2 and go to Step  (A). 

Theorem 20: 

Let    S    be a convex compact space,    H(z)    a concave upper semi- 

continuous  functional defined on    S  ,    G(z)    a vector of convex lower 

semi-continuous  functionals defined on    S   , and let    {u      } be the 

sequence of multipliers generated by Algorithm 3.    Then 

(3.2-7) 11m Q(u(n)) - 0 
n-H» 

Proof; 

» _ (n) If at each Iteration we set u "/ ■ n^"7 , the algorithm reduces to a 

Phase I generalized program and such a procedure converges by Theorem 

18. However, by Theorem 11  of Section (2.3) and the fact that u 

Is an optimal solution for the dual, we have 

P(d) -Sup  H(z) - Inf L(u) - L(u) , 
(*) G(z)<d    u > 0 

z c S 

and hence that the primal optimal must occur on a hyperplane whose 
A 

gradient is    u .  Algorithm 3 is merely a Phase I generalized program, 

restricted to the Intersection of the hyperplane defined by   (*)  and 

Y    , and   It   converges by Theorem 18,  Section (3.1)  if an extreme o 

point of this set Is generated at each iteration. Steps (3) and (4) 

construct the necessary extreme point in a finite number of steps by 

the continuity of    L(u).     Hence  the procedure converges and 

11m Q(u(n))  - 0  . 

mm immm 
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3.3 A PRIMAL-DUAL ALGORITHM FOR CONCAVE PROGRAMS 

One of the computational difficulties with using Dantzig's decomposition 

algorithm for concave programs is that at times it exhibits poor converßcnce 

properties.  Poor convergence for any particular problem is due to the shape 

of the convex set Y  for that particular problem.  Recall 

(3.3-1)    Y0 - {y . y | y < H(z), y > G(z), z e S} . oo 

The duality theory presented in the previous chapter has the geometrical 

property that for a particular vector of Lagrange multipliers u , if the 

associated primal solution is not unique and therefore on a linear segment, 

then the associated dual solution Is pointed; and vice-versa.  Hence, when- 

ever one method exhibits poor convergence properties, the other should not 

have these difficulties. Therefore It Is believed that a primal-dual method 

will overcome any of the poor convergence properties that either method might 

exhibit Independently. 

The following algorithm is a combination of the primal and dual 

algorithms presented. At each iteration, an extreme point of the set Y 

Is generated using the optimal simplex multipliers for that Iteration. 

Then, Instead of returning to the linear program as in Algorithm 1, a 

gradient descent step on L(u)  is performed.  Hence, a second extreme point 

of the set Y  is generated, and finally the procedure returns to the linear 

program 'o compute new simplex multipliers. 

Algorithm 4 Primal-Dual Algorithm for Concave Programs 

Step  (0)  Let R^ ^ ■ {0} be an index set whose only element is 

associated with z  defined in (3.1-4).  Set B = «> and 
o 

n - 0 . 
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Step (1)    Set   flag - 0    and solve 

(n), R(uW) - Max l        HÜr)Xr 
reR(n) 

rER(n) 

reR(n) 

Xr ^ 0' r c R(n) 

yielding an optimal solution X(n) , and associated simplex 

multipliers u(n) . Define * " " _ I  r/r • 

Step  (2) If B - R(u(n)) < c , STOP. 

reR(n) 

Step  (3) Solve 

L(u(n)) - Max JH(z) - u(n) ' tG(z) - d]j 
zcS ' ' 

yielding i . Set B - Min [L(u " ), B] and if B - L(u(n)), 
n 

set u • u    and z(u) - z . Define the index set R, .v 

by R(n+l) - R(n) U {n} . If flag  - 1 , then go to Step  (1). 

Step  (4) Define 

6(n) - ^d - GjüCG))  if G^'zM)  > dj or ^ > 0 

if G.üdl)) < d. and u. - 0 . 

Determine a new set of Lagrange multipliers by 

u(n+l) m - _  e6(n) where e is a 8calar 8uch that 

u, 
0 < 6 <. Min | e , -1 

.(n) 
6j 

6^ > 0 

and 6 is the maximum step size. Set flag  - 1, n - n + 1 , 

and go to Step  (3). 
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If there does not exist an Initial nondegenerate basic feasible solution, 

as defined in (3.1-4), then a Phase I procedure can be used which is also a 

primal-dual algorithm. In this event, stops (1) and (2) are at first 

replaced by steps (I1) and (2') of Section (3.1). Alternatively, only dual 

steps might be performed until a feasible solution is generated. This 

eliminates the Phase I procedure and has an intuitive appeal since the dual 

algorithm moves simultaneously towards feasibility and optimality. 

Theorem 21; 

Let  S be a convex compact space,  H(z) a concave upper scnd-contlnuous 

functional defined on S , G(z) a vector of convex lower seml-contlnuous 

functionals defined on S , z an optimal solution to the primal problom 

(3.1-1), and let {u  } be the sequence of multipliers generated by 

Algorithm A.  If there exists  z  e S such that G(z ) < d , then 
o o 

(3.3-1) lim u(n) - u 
n-x» 

(3.3-2) lim H(z(n)) 
n^» 

Max H(z) 
G(z) < d 

z e S 

(3.3-3)   H(z) - u ' [C(7.)  - d] - MaxfH(z) - u • tG(z) - d]) 
zeS 

Proof: 

Since the algorithm finds two extreme points of the set Y  at eacb 

iteration of the decomposition algorithm for concave programs, It must 

converge by Theorem 18. 
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3.4 NONCONVEX CONSIDERATIONS 

In the previous sections of this chapter the emphasis has been on 

relating the dual algorlth-n presented here to Dantzlg's decomposition 

algorithm for concave programs.  However, by Theorems 3 and 4 of Section (2.1), 

we have that L(u) Is a convex continuous function of u for all u ^ 0 ; 

and this result does not explicitly depend on the nature of the set S, or on the 

properties of the functlonals H(z)  and G(z) defined on S . Hence the 

dual problem 

(3.A-1) Inf L(u) , 
u >. 0 

where L(u)  Is given by 

(3.4-2)        L(u) -Sup[H(z) - u • (G(z) - d]), 
zcS 

may be solved In place of the primal problem even when the primal Is not a 

concave program.    Since evaluating    L(u)    defines a linear supporting 

function of    P(y)  ,  assuming the graph of   P(y)    Is closed,  if it can be 

shown that the solution of the primal problem is on the convex hull of 

(3.4-3) Y0 - {yo.  y  | yo < H(z),  y ^GU),  z e 3}   , 

then, noting Theorem 12 of Section (2.3), the dual algorithm may be used 

to produce this solution. 

For that particular nonconvex problem that satisfies the conditions of 

Theorem 11, Section (2.3), we have the following much stronger result. 
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Theorem 22; 

Let S be a convex compact space, H(z) - u • [G(z) - d] a 

functional defined on S x {u | u >, 0) , quasl-concavu and 

upper semi-continuous in z for all u >, 0 , and let {u  ) 

be the sequence of multipliers generated by Algorithm 2, 

Section (3.2). Then 

(3.A-3) 11m u(n) - u 

(3.4-A)        lim L(u(n)) - Inf L(u) 
n-*o u > 0 

Further, if there exists z c S such that G{.i )   < d , o o ' 

then the Inf is always attained and may be replaced by Mln. 
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CH . r^R A 

DYNAMIC ECONOMIC PLANNING 

A.l THE OPTIMAL ADJUSTMENT OF THE CAPACITY OF A FIRM 

As indicated in the introduction, an economic problem gave rise to the 

more general results presented in this paper. Therefore, in this chapter 

we formulate an economic example for which the theory is applicable. The 

particular problem was chosen because it has been considered by others, is 

relatively straight-forward to explain, and emphasizes the dynamic  nature 

of the policies of a firm.  It was the desire to actually compute these 

dynamic policies for the firm under nontrivial assumptions that motivated 

the theory presented. 

We will consider a multi-divisional firm where each division produces 

a separate commodity. Further, we will assume that the production structure 

is separable in the sense that the policies of one division only effect 

the policies of another through demands for the same resources [7 ]. If 

none of the firm's resources are binding then the policies of the different 

divisions are completely Independent. For simplicity, we assume that the 

production structure of each division can be represented by a homothetic 

production function with an analytic form, and that storage is not allowed. 

(See Appendix B for definitions and examples of homothetic production 

functions.) In general the problem to be considered is, given the demand 

for each commodiry as a function of time, determine the capacity of a firm 

to meet this demand as a function of time subject to budgetary and other 

resource constraints. 

v 
Let C (t) , defined for  t e [0, T] , be the demand at time t for the 

I 
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th k 
k      commodity of Che firm; aad assume    £  (t)    is continuous and has a finite 

k 
number of relative maxima in the interval (0, T] . Let y (t) , defined for 

t c [0, T] , represent the capacity of the firm at time t to produce the 

th k k      commodity, and let    v (t)   ,  defined for    t c  (0, T)   , be the actual 

level of production at time    t    of the k      commodity.     Since storage is net 

allowed for this simple model, we have 

(4.1-1) vk(t)  < Min  (yk(t)   , 4k(t))    k c K 

k k th 
Letting F (♦ (x)) be the homothetic production function for the k  commodity, 

a nonnegative vector x (t) of Inputs at time t can produce a nonnegative 

k th 
amount v (<:) of the *  commodity at time t if and only if 

(4.1-2) fk^k(xk(t))) > vk(t) k e K . 

Assuming the supply of inputs is not restrictive,   the net production income 
th 

for the k     division at  time    t     (sales revenue less production costs)  is 

given by 

(4.1-3)       rk vk(t) - pk(p) fk(vk^))+ k e K 

th k 
where the selling price of the k  romodity r  and the vector of purchase 

prices of the inputs p are assumed constant.  Further, assume that we can 

Increase capacity at a positive cost proportional to the rate of Increase, I.e., 

(4.1-4) ck yk(t)  if yk(t) > 0 , 

See Appendix B for this representation of a homothetic cost function and note 

that  F~1(.) A f(.) . 

B^^^^^^^^^^l 
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and decrease capacity at a salvage value proportional to the rate of 

decrease but less than or equal to the cost of an equivalent Increase, i.e., 

(4.1-5)       Yk ck yk(t) If yk(t) < 0 and 0 < Yk < 1 • 

Hence the present value of the Income of the firm for all commodities over 

the time Interval     [0,  T]    Is given by 

(4.1-6) I      I     rk vk(t) - Pk(p)  fk(vk(t)) 
keK  J0 

yk(t)   f6(yk(t)) + Y
k(i-(5(^(t)))J " c    y"(t)   |6(y,>(t)) + v'Vl - *fi*,*^M   e-at dt 

C^l-7) whe^e    «(z)-}1    "    Z " 0 

'o    if     2  <   0 

and    a    Is the interest rate. 

The problem is then to choose the capacity function    y(t)  , with the initial 

capacity    y(0)    and  the time horizon    T    known,  that maximizes  (4.1-6) 

subject to  (4.1-1) and some typical constraints.    For example, 

(4.1-8) Lk < yk(t) < Mk    t e  [0,T] k e K 

(4.1-9) I     /     ck yk(t)    6(yk(t)) + Yk(l - Hy^U))      e~at dt < B  . 
kcK Jn 

Relation  (4.1-8)  bounds  the rate at which we may change the capaclty and 

(4.1-9) bounds the expenditures on these changes in capacity by a g.'ven budget. 

If we now let    z(t)   = y(t)    so  that 
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(A.1-10) y(t) - y(0) +/ r(8) ds I 
we can summarize the problem formulated above as follows: 

Example 1 

T 

( 

(4.1-11)  Max I     f\xV  vk(t) - Pk(p) fk(vk(t)) - 
kcK Jn  ' 

- ck zk(t)|6(zk(t)) + Yk(l " 6(zk(t)))]je"atdt 

subject to 

k  I k k 
Sj - Iss .v 

.k ^ k 
L < z (t) < £ t c tO, T] I k e K 

0 < v (t) < Min (yk(0) +/zk(8)d8, Ck(t)) 

T 

J   f kcK Jn 

ck zk(t) [6(Z
k(t)) + Yk(l - «(«k(t))]j e"0t dt < B . 

The above example only has one global constraint, the budget constraint. 

This convenient formulation depends upon the assumption that the available 

inputs are not restrictive and thus the minimum cost function at time t for 

the k  commodity does not depend explicitly on x (t) . 

We will now complicate Example 1 by allowing the input space to be 

bounded. We add constraints for those factors of production that are limited 

in supply. Let I ■ {1, 2, ...,1} be the index set of these factors. 

(4.1-12) 

T 

kcK Jn      
1 1 

k(t) dt < xj i e I 
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+ 1    If  the 1      resource is consumed by the k      process 

(A. 1-13)      where    a.  ■  \ - 1    If the 1      resource is produced by the k      process 

0    otherwise. 

Defining    a.    in this manner allows for producing some commodities that are 

inputs in the production of other commodities.    Thus we can summarize the 

extended problem as follows: 

Example 2 

(4.1-1A) if' Max    1     I  irk vk(t) - p-xk(t) - ckzk(t)  [6(zk(t)) + ^{1-6^) 
keK^ 

]|e-dt 

subject  to 

k      7 k      k      k 
82 - \z  , x , v 

k        k k 
L    <  zK(t)  < MK 

0    <  x^Ct) 

t  t  [0,  T) 

0    < vk(t)  <  Fk(*k(xk(t))) 

vk(t) < Min  (yk(0) + J zk(r) ds,  fit)) 

y k k 
kcK<.    1    x 

(t) dt < x^ lei 

lf\ ck zk(t)[6(zk(t)) + Yka-«(2k(t)) 

k e K 

)]je-atdt < 

wmmmmmtatm 
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4 • 2    APPLICABILITY OK THi; THF.ORY 

In order  to demonstrate that  the  theory is applicable,  we need only 

verify  that  the conditions of the  theorems of Chapter 3 are  satisfied. 

We will assume  that  the strategies under  consideration in both examples are 

chosen from the space    L2    consisting of  numerical functions    g    defined 

on    (0, T]     (to within a set of measure  zero) with norm defined by 

(A.2-1) i8(t)rdt < + <*>. 

It Is well known that L? is a complete normed linear space and thus a 

Banach space.   Since L_ is also reflexive, we can use the weak* topology 

on L_ , under which the strategy sets will be compact. 

We will first consider Example 1.  The strategy sets  Slfk E K are convex 

by the following lemma. 

Lemma 23: 

The set 

z, v L < z(t) < M t e [0, T] 

0 < v(t) < Min I  y(0) + J z(s)ds, ^s)) 

is convex in  (z, v) . 

Proof; 

The first constraint is linear in z  and the second is linear in v 

Therefore, we need only show that 

See Berge [6] p. 252. 
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n /y(0) + f z(8)d8,  at)) 

Is a concave function In    z    and hence 

v(t) - Mln y(0) + (y(0) + J Z(8)d8. {(t)j 

I t(s)d« is a convex function. We have that y(0) + J z(B)ds la linear In 

z and C(t) is constant In z . Thus Mln|y(0) +J z(8)d«, 5(t)| 

is a concave function in z , since the minimum of two concave functions 

is concave. 

To establish that the global constraint is a convex function we prove the 

following lemma. 

Lemma 2A; 

If 0 < y < 1 ,  then the capacity adjustment cost function 

I -at 
{c z(t)[6(z(t)) - Y(l-6(2(t))]} e   dt is CMIV«« in a . 

Proofi 

The result is easily seen by graphing the Indicated function for 

fixed    t    as follows: 
c z(t)(6(z(t)) - yd" (z(t)))] 

re 
* tit) 

■at 
Since e  * > 0 V t , the integral of interest Is convex In z 
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The objective function of Example 1 Is concave In  (z, v)  since the total 

Income is the sum of the net production income 

(A.2-2)      I    /|rk vk(t) - Pk(P) fk(vk(t))| e"0t dt . 
kcK-J 

k     k, kv k 
which is concave in v  if  f (v )  is convex in v , and the negative of 

the capacity adjustment cost  function 

(4.2-3)   - I    /|ck zk(t)(6(Z
k(t)) + Yka-<5(zk(t))] I e"at dt 

which is concave in z  by Lemma 15. 

lc 
In Example 2, we have strategy sets S» k c K that differ from those 

of Example 1 only by the nonnegativity restriction on x (t) and the 

production constraint which is convex by the following lemma. 

Lemma 25; 

If    f(v)     is a convex increasing function in    v    and    «Kx)    is a 

concave function in    x  ,   then 

v(t)  -  F(*(x(t))) 

is a convex function in     (v,   x)   . 

Proof; 

Since {{•)    is the inverse of F(") by definition and  fO)  is a 

convex increasing function, T(')     is  a concave increasing function. 

.*M 
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A concave incveaslng transformation of a concave function is 

concave,    and thus    F(4i(x(t)))    Is concave In    x    and 

v(t) - F(4>(x(t)))    Is convex in    (x,v)  . 

k k      k      k Hence the strategy sets    S.    are convex in    (z , x , v )   , k c K .    The 

additional global constraints In Example 2 on the factors of production that 
k 

are limited (4.1-12) are convex since they are linear in x . Finally, the 

k      k 
objective function is concave since it is linear in x  and v , and 

concave in z  by Lemma 2A. 

The last condition to verify for the theorems of Chapter 3 is that the 

maxima of the Lagrangian subproblems is taken on for all u ^ 0 . However, 

as this depends on the solution technique employed, we will consider this 

point in the next section. First, we will show the subproblems for Example 1 

and Example 2 can be considered to have the same structure. The Lagrangian 

subproblems for Example 1 are 

I (4.2-4)      Ha      J {rkvk(t) - Pk(p) fk(vk(t)) - 

(ck + ün) zk(t) [6(zk(t) + Yk(l-6(zk(t)))]| e"at dt B' 

subject to 

i k  k S1 - Jz , v Lk <. zk(t) < Mk t € tO, T) 

0 < vk(t) 4 Min |yk(0) + J zk(s)ds, cNoj (Ao, + | 

where u  is the current Lagrange multiplier associated with the global 
B 

See Berge [6], Page 191. 

^^BM__MMM^HaMB^M^^^^^^M_|M|| 
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budget constraint.    The Lagranglan subproblems for Example 2 are 

63 

(A.2-5) Max li rk vk(t) - pk •  xk(t) - 

-  (r. + uB)  zk(t)[6(zk(t)) + Yk(l-«<«k(t))) >]l •- dt 

subject to 

x  ,   vK      L* < zK(t) < MK t e   {0,   T] 

0    < xk(t) 

0    <.vk(t) < Fk(tk(xk(t))) 

vk(t) < Mln   (yk(0) +    f   rk(8)de,   Ck(t)j 

*k k ~ where    p, - p. + a.  u^ i e I 
1 1 1 X 

and    u e E      Is the vector of Lagrange multipliers associated with the 

constraints on the ' outs.     If we have formulated  the problem correctly,   the 

optimal solution w:. . be finite; and thus the optimal Lagrange multipliers 

'k k will be such that the associated    p    >, 0  .    Although    x  (t)     Is restricted 

In Example 2,  it  is only restricted  to nonnegativity in the associated 

Lagranglan subproblems.     Kence we may use  the cost  function representation 

to reduce the Lagranglan subproblems  for Example  2  to 

(4.2-6) Max }i k    k k  "       k    k 
rK v*(t)  - Pk(p)  fK(vK(t))  - 

-   (c + uB)  2
k(t)   |6(zk(t))  + Yk(l-6(zk(t)))]j   e'at dt 
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subject to 

k  k 
Z , V L < z (t) < M' t c (0, T) 

0 < vk(t) < Min [yk(0) +  f zk(8)ds, Ut)) 

'k        k ~ 
where Pj E Pj^ + ^j ^j   lei. 

Note that (A.2-6) and (4.2-A) have the same form. 

■MHHMM 
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A.3    SOLUTION OF THE SUBPROBLEMS 

Ir order to emphasize  the alternatives presented, we will note two 

solution techniques for the Lagranglan subproblems - one exact and one 

approximate.     For the exact  technique,   the strategy set will be restricted 

to strategies of expansion only,   i.e., 

(A.3-1) 0 - Lk <  zk(t)  < Mk     V t c  (0,  T] k e K 

and the homothetic production structure will be restricted to constant 

returns to scale, i.e.. 

(A.3-2) f(v) = v 

~k       k ' ~k 
Noting that P., •= p., + a u.  for Example 2 and letting p = p  for 

Example 1, the Lagranglan subproblems for both examples may then be written 

(A.3-3) I Mas | j(rk - Pk(pk)) vk(t) - (c + uj  zk(t)[ e'at dt 

subject to 

ek  C k  k 
S « I z , v 0 < zk(t) < Mk t e [0, T] 

0 < v (r) Min/y
k(0) + / zk(S). 4k(t)) 

k   k ~k th 
if r < P (p ) , then the optimal solution to the k  subproblem Is 

k k   k ~k 
z (t) - 0  V t E [0, T] .  If  r  > P (p ) , then the optimal solution to 

the k  subproblem will be such that 

See Lemma D of Appendix B. 
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(4.3-4) k (k 1 k k ) v (t) • Min y (O) + ~ z (s), t (t) t t. [0, T) 

and (4.3-3) reduces to 

(4.3-5) Max J 
0 

{ 
k k ~k I k Jt 

(r - p (p ))Min\; (0) + 

0 

k k ~\ z (s)ds, t (tJ -

<•k + ~.> •k(t)l .-•t dt 

subject to 

An exact solution technique for precisely this problem (4.3-5) has been 

given by Arrow, BeckJUnn, and Karlin [1). Their method employs a minimax 

theorem and considers the following problem, which is equivalent to (4.3-5). 

ll k k -k 
Max Min (1- a(t))(r - P (p }}((t) 
k sk 1t Ak z [ Q [ 

It It -It I k 7 k ) + o(t)(r - P (p ))~ (0) + ~ z (s)ds 

(4. 3-6) 
It ~ It I -at -(c + u

8
) z (t) e dt 

where 

Sit • {zit 0 < 
It Hit (0, T)} z (t) < t [ - • • 

Ak • {ok 0 < ok(t) < 1 • t [ (0, T)} . - • 

The str4tegy sets Sit and Ak are compact in the weak* topology by 

is linear in each variable separately • it is .::ontinuot;s in each in the weak* 

t See Berge (6] p. 262 
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I 

topology.  Hence the indicated Max in (A.3-5) exists.  Therefore, the 

problem of optimal capacity expansion of a multi-commodity firm with 

constant returns to scale can then be handled by an algorithm proposed in 

this paper with the technique of Arrow, Beckmann, and Karlin employed to 

solve the subproblems at each iteration.  In Example 2, the solution of 

the Lagrangian subproblems must be translated into the required form if a 

primal algorithm is to be employed.  This is easily accomplished, since a 

vector of inputs x (t)  yielding minimum cost at time  t  is given by 

(4.3-7)      xk(t) - fk(vk(t)) -f     t c [0, T] 
rd) 

-k -t 
where x       is determined by 

p    x    = Min p   'X k  c K 

(4.3-8) Subject  to 

Fk(*k(x))   >  1   . 

We will now consider the approximate technique of dynamic programming 

for the solution of the Lagrangian subproblems of the form (A.2-6).  The 

It 
continuous demand functions  4 (t)  are then replaced by discrete 

approximations, with intervals normaHzed to length one, and numbered in 

the reverse order, such that 

b ^k(t)dt   Si 
(/..3-9)   ^ = -D7^ 1 c  /    4k(t)dt   keK 

n   n+1 
tn+l 

See Lemma E of Appendix B 
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A typical approximation is given below where the number of intervals is 

chosen by the degree of accuracy desired. 

0 N N-l N-2 

If we define y  as the capacity for the k  commodity in the n 

Interval, we have 

(A.3-10) 
yn " yn+l 

+ Zn+1 

where    z      is the adjustment  that  takes place  in the n      interval.    Letting 

v      be the level of production of  the k      commodity in the n      Interval 

and     ß    be the discount factor associated with  Interest rate    a  ,   the 

approximation to the k      Lagrangian subproblem is 

Max    I    !rk vk - Pk(pk)   fk(vk) t,   | n r n n=l 

-   (ck + ÜB)   zk(6(^) + Yk(l-6(zk)))j    ßn 

(A.3-11) subject  to 

k       /   k      k 
S    =    I z   ,  v L     <  z    < M 

■    n ^ 

0    < v    < Mlu 
*    n = (v 4 

where    p,   = p.  + a.   u. ri       rl 1     i lei. 

■M 
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• 

Since 

(A.3-12) 

L < z < M 
■  n = 

0 < v <  Max  t(t) < + ^ , 
" " " te(0,T] 

k k 
S  Is a closed bounded set In euclldlan n-space; and hence S  is compact. 

Therefore, the indicated Max in (A.3-11) exists. The recursive 

relationship used to solve the Lagrangiau subproblems is then 

-«-„"M^H'-*))) 
. cn-l k / k J k\) 
+ ß   Tt   (y + z ) 

n-lVn   n/) 

(A.3-13)   subject to 

Lit     K    •»•* 
< z < M c n = 

0 < v < Mi 
■= n = *& Ö 

where 

rl{yl) A 0 

This is a straight forward one dimensional problem that is relatively easy 

to solve on a computer.  Hence, both examples may be handled by the algorlthn:; 

proposed, with dynamic programinlng used to approximate the solutions of the 

Lagrangian subproblems. 
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APPENDIX A 

MINIMAX THEOREMS 

We state here the two powerful mlnlmax theorems employed In the 

derivation of the duality theory; one due to Sion[26] and the other to Fan 

[1A]. 

Lemma A: Sion's Minimax Theorem 

Let M and N be convex topological spaces, one of which Is compact, 

and F(u,v) a functional defined on M x N , quasi-concave and upper 

semi-continuous in u for all v e N , quasi-convex and lower 

semi-continuous in v for all u e M .  Then 

Sup Inf F(u,v) • Inf Sup F(u,v) . 
ueM veN        veN UEM 

Lemma B; Fan 's Minimax Theorem 

Let M be a convex set ?id N a convex compact Hausdorf space.  Let 

F(u,v) be a functional defined on M x N , concave in u for all 

veN, convex and lower semi-continuous in v for all ueM.  Then 

Sup Inf F(u,v) = Inf Sup F(u,v) 
ueM veN        veN ueM 
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APPENDIX  B 

HOMOTHETIC COST AND PRODUCTION  FUNCTIONS 

Homothetlc  cost  and production  functions were first  defined  by  Shcplinrd 

(2A]  and are extensively treated  In his  recent work  (25).     In this appendix, 

we define the functions, give    some examples,  and note the properties  that 

are employed elsewhere. 

Definition; 

A homothetlc  production  function  is  one of  the form    ¥($(*))     whore 

♦(x)     is nonnegative, homogeneous of degree one,  nondecreaslng In    x  , 

upper  seml-contlnuous and quasi-concave  for all    x c  D "  {x|x.   >  0   Vi); 

and    ¥(')     is  nonnegative,  continuous  and  strictly  Increasing with 

F(0)  ■= 0  . 

In what  follows  the  Inverse function of     F(*)   ,  which always  exists  since 

F(-)     is  strictly  Increasing,  will  be denoted  by    f(')   .     The  following 

lemma gives   the most  Important  property of  homothetlc  production  functions. 

Lemma  C: 

The  isoquant  for any output   rate    u  >   0    of  a homothetlc  production 

function may  be obtained  from  that  for  unit  output  rate by radical 

expansion  from  the origin  In a  fixed   ratio    f(u)/f(l)   . 

The class of  hou.othetic  production  functions  includes all  of   the  production 

functions  commonly employed.     Some  examples  are as  follows: 

All  definitions  and   lemmas are  taken  from  Shcphard   [25] 
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Cobb-Douglas 

n      a, 

B-l 

*(x) 

f(u) 

n 
A    u    x        A > 0, a    > 0,    I    a 

1-1    1 1 i-1    i 

1/r 

Arrow-Chenery-Minhas-Solow (ACMS) 

B-2 

♦ (x) 

f(u)  - u 

I    ai ^ 
1-1 

-b 

1 
b 

a    > 0    b > - 1 

Vzawa (Generalized ACMS) 

B-3 

J      r 
♦ (x) -    n        1 

J-l  [leNj 

-b . T     b, 
aixi 

a    > 0, b    > - 1,  p    >  0,    I    p    - 1 
J :, j=l    :, 

f(u) ■= u 

The function f(*)  completely dlscrlbes the returns to scale as follows. 

Lemma D: 

f(u)     convex  Implies nonlncreasing returns to scale,     f(u)     concave 

implies  nondecreasing returns  to scale,   and    f(u)     linear  implies 

constant  returns  to scale. 

For  any  price direction    p  E  D =  (pip.   *  0   Vi)     and  nonnegative  level 

of  output     u  >  0   ,   there  is associated with  any  production function a cost 

function given by 

^^^MMa 



73 

Q(u, p) ■ Min p'x 

B-4 F(»(x)) > u 

x e D 

Note that the cost function is defined for x > 0 but otherwise unrestricted, 

For a homothetic production function the cost function has a more specific 

form given by I 

B-5 Q(u, p) = P(p) f(u) . 

This convenient representation for the cost function and the radial expansion 

property of Lemma G yield the following useful result. 

Lemma E; 

If  the vector x(l)produccs one unit  of output at minimum cost  then the 

vector     x(u)   = *)■,(  x(l)     produces     u    units of output  at minimum cost. 

Proof; 

By definition Q(u, p) «= Mln p'x = p'x(u) and for a homothetic cost 
F('Kx))>u 

function Q(u, p) = P(p) f(u) .  Therefore, 

.  .      x(u)      x(l) p(p) = p * Too K P • Tut 

and hence p • x(u) ■ p • ' ).l  x(l).  Therefore, the input vector 

--/, i   x(])  produces u units of output at minimum cost. 

Corresponding to each of the examples of homothetic production functions, w^ 

have the following homothetic cost functions: 



n 

Cobb-Douglae 

B-6 -• '>" [* Ä (?) 1"" 
A>Oa.   >0      J^a, -r 

1-1    1 

Arrow-Chenery-MinhaB-Solow (ACMS) 

B-7 

b     ^^ 

a    > 0   b > - 1 

Vzawa  (Generalized ACMS) 

B-8 
Q(u,  o) ■ I ft) ' .^ a' © J 

b 

b.+l ••(¥) 
8 

a    > 0, b    > - 1, p     > 0,    j;    p   - 1    . 

HBs^^an^^i^^^aB ^1 
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